Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(5): 1949-1958, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36700533

ABSTRACT

Brominated organic compounds such as 1,2-dibromoethane (1,2-DBA) are highly toxic groundwater contaminants. Multi-element compound-specific isotope analysis bears the potential to elucidate the biodegradation pathways of 1,2-DBA in the environment, which is crucial information to assess its fate in contaminated sites. This study investigates for the first time dual C-Br isotope fractionation during in vivo biodegradation of 1,2-DBA by two anaerobic enrichment cultures containing organohalide-respiring bacteria (i.e., either Dehalococcoides or Dehalogenimonas). Different εbulkC values (-1.8 ± 0.2 and -19.2 ± 3.5‰, respectively) were obtained, whereas their respective εbulkBr values were lower and similar to each other (-1.22 ± 0.08 and -1.2 ± 0.5‰), leading to distinctly different trends (ΛC-Br = Δδ13C/Δδ81Br ≈ εbulkC/εbulkBr) in a dual C-Br isotope plot (1.4 ± 0.2 and 12 ± 4, respectively). These results suggest the occurrence of different underlying reaction mechanisms during enzymatic 1,2-DBA transformation, that is, concerted dihaloelimination and nucleophilic substitution (SN2-reaction). The strongly pathway-dependent ΛC-Br values illustrate the potential of this approach to elucidate the reaction mechanism of 1,2-DBA in the field and to select appropriate εbulkC values for quantification of biodegradation. The results of this study provide valuable information for future biodegradation studies of 1,2-DBA in contaminated sites.


Subject(s)
Dehalococcoides , Ethylene Dibromide , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Dehalococcoides/metabolism , Organic Chemicals , Biodegradation, Environmental , Chemical Fractionation
2.
J Environ Sci (China) ; 118: 204-213, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35305769

ABSTRACT

Biodegradation of lower chlorinated benzenes (tri-, di- and monochlorobenzene) was assessed at a coastal aquifer contaminated with multiple chlorinated aromatic hydrocarbons. Field-derived microcosms, established with groundwater from the source zone and amended with a mixture of lower chlorinated benzenes, evidenced biodegradation of monochlorobenzene (MCB) and 1,4-dichlorobenzene (1,4-DCB) in aerobic microcosms, whereas the addition of lactate in anaerobic microcosms did not enhance anaerobic reductive dechlorination. Aerobic microcosms established with groundwater from the plume consumed several doses of MCB and concomitantly degraded the three isomers of dichlorobenzene with no observable inhibitory effect. In the light of these results, we assessed the applicability of compound stable isotope analysis to monitor a potential aerobic remediation treatment of MCB and 1,4-DCB in this site. The carbon isotopic fractionation factors (ε) obtained from field-derived microcosms were -0.7‰ ± 0.1 ‰ and -1.0‰ ± 0.2 ‰ for MCB and 1,4-DCB, respectively. For 1,4-DCB, the carbon isotope fractionation during aerobic biodegradation was reported for the first time. The weak carbon isotope fractionation values for the aerobic pathway would only allow tracing of in situ degradation in aquifer parts with high extent of biodegradation. However, based on the carbon isotope effects measured in this and previous studies, relatively high carbon isotope shifts (i.e., ∆δ13C > 4.0 ‰) of MCB or 1,4-DCB in contaminated groundwater would suggest that their biodegradation is controlled by anaerobic reductive dechlorination.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Carbon Isotopes , Chemical Fractionation , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 788: 147579, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34023600

ABSTRACT

Adverse impacts of mine tailings on water and sediments quality are major worldwide environmental problems. Due to the environmental issues associated with the deposition of mine tailings on land, a controversial discussed alternative is submarine tailings disposal (STD). However, Fe(III) bioreduction of iron oxides (e.g., magnetite) in the tailings disposed might cause toxic effects on coastal environments due to the release of different trace elements (TEs) contained in the oxides. To study the extent and kinetics of magnetite bioreduction under marine conditions and the potential release of TEs, a number of batch experiments with artificial seawater (pH 8.2) and a marine microbial strain (Shewanella loihica) were performed using several magnetite ore samples from different mines and a mine tailings sample. The elemental composition of the magnetite determined in the tailings showed relatively high amounts of TEs (e.g., Mn, Zn, Co) compared with those of the magnetite ore samples (LA-ICP-MS and EMPA analyses). The experiments were conducted at 10 °C in the dark for up to 113 days. Based on the consumption of lactate and production of acetate and aqueous Fe(II) over time, the magnitude of Fe(III) bioreduction was calculated using a geochemical model including Monod kinetics. Model simulations reproduced the release of iron and TEs observed throughout the experiments, e.g., Mn (up to 203 µg L-1), V (up to 79 µg L-1), As (up to 17 µg L-1) and Cu (up to 328 µg L-1), suggesting a potential contamination of pore water by STD. Therefore, the results of this study can help to better evaluate the potential impacts of STD.


Subject(s)
Trace Elements , Ferric Compounds , Ferrosoferric Oxide , Shewanella , Solubility
4.
Mar Environ Res ; 151: 104782, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31514974

ABSTRACT

Shewanella is a genus of marine bacteria capable of dissimilatory iron reduction (DIR). In the context of deep-sea mining activities or submarine mine tailings disposal, dissimilatory iron reducing bacteria may play an important role in biogeochemical reactions concerning iron oxides placed on the sea bed. In this study, batch experiments were performed to evaluate the capacity of Shewanella loihica PV-4 to bioreduce different iron oxides (ferrihydrite, magnetite, goethite and hematite) under conditions similar to those in anaerobic sea sediments. Results showed that bioreduction of structural Fe(III) via oxidation of labile organic matter occurred in all these iron oxides. Based on the aqueous Fe (II) released, derived Fe(II)/acetate ratios and bioreduction coefficients seem to be only up to about 4% of the theoretical ones, considering the ideal stoichiometry of the reaction. A loss of aqueous Fe (II) was caused by adsorption and mineral transformation processes. Scanning electron microscope images showed that Shewanella lohica was attached to the Fe(III)-oxide surfaces during bioreduction. Our findings suggest that DIR of Fe(III) oxides from mine waste placed in marine environments could result in adverse ecological impacts such as liberation of trace metals in the environment.


Subject(s)
Iron , Shewanella , Ferric Compounds , Geologic Sediments , Iron/chemistry , Oxidation-Reduction , Oxides , Shewanella/chemistry
5.
Sci Total Environ ; 648: 422-429, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30121041

ABSTRACT

Chlorinated ethanes are frequent groundwater contaminants but compound specific isotope analysis (CSIA) has been scarcely applied to investigate their degradation pathways. In this study, dual carbon and chlorine isotope fractionation was used to investigate for the first time the anoxic biodegradation of 1,1,2-trichloroethane (1,1,2-TCA) using a Dehalogenimonas-containing culture. The isotopic fractionation values obtained for the biodegradation of 1,1,2-TCA were ɛC = -6.9 ±â€¯0.4‰ and ɛCl = -2.7 ±â€¯0.3‰. The detection of vinyl chloride (VC) as unique byproduct and a closed carbon isotopic mass balance corroborated that dichloroelimination was the degradation pathway used by this strain. Combining the values of δ13C and δ37Cl resulted in a dual element C-Cl isotope slope of Λ = 2.5 ±â€¯0.2‰. Investigation of the apparent kinetic isotope effects (AKIEs) expected for cleavage of a CCl bond showed an important masking of the intrinsic isotope fractionation. Theoretical calculation of Λ suggested that dichloroelimination of 1,1,2-TCA was taking place via simultaneous cleavage of two CCl bonds (concerted reaction mechanism). The isotope data obtained in this study can be useful to monitor natural attenuation of 1,1,2-TCA via dichloroelimination and provide insights into the source and fate of VC in contaminated groundwaters.


Subject(s)
Carbon Isotopes/analysis , Chlorine/analysis , Chloroflexi/metabolism , Isotopes/analysis , Trichloroethanes/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Chemical Fractionation
6.
Sci Total Environ ; 645: 286-296, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30029110

ABSTRACT

The effects of contaminant sources removal in 2005 (i.e. barrels, tank, pit and wastewater pipe sources) on carbon tetrachloride (CT) and chloroform (CF) concentration in groundwater were assessed at several areas of a fractured multi-contaminant aquifer (Òdena, Spain) over a long-term period (2010-2014). Changes in redox conditions, in these chlorinated methanes (CMs) concentration and in their carbon isotopic compositions (δ13C) were monitored in multilevel wells. δ13C values from these wells were compared to those obtained from sources (barrels, tank and pit before their removal, 2002-2005) and to commercial solvents values in literature. Additionally, CMs natural attenuation processes were identified by C-Cl isotope slopes (Λ). Analyses revealed the downstream migration of the pollutant focus and an efficient removal of DNAPLs in the pit source's influence area. However, the removal of the contaminated soil from former tank and wastewater pipe was incomplete as leaching from unsaturated zone was proved, evidencing these areas are still active sources. Nevertheless, significant CMs degradation was detected close to all sources and Λ values pointed to different reactions. For CT in the tank area, Λ value fitted with hydrogenolysis pathway although other possible reduction processes were also uncovered. Near the wastewater pipe area, CT thiolytic reduction combined with hydrogenolysis was derived. The highest CT degradation extent accounted for these areas was 72 ±â€¯11% and 84 ±â€¯6%, respectively. For CF, the Λ value in the pit source's area was consistent with oxidation and/or with transport of CF affected by alkaline hydrolysis from upstream interception trenches. In contrast, isotope data evidenced CF reduction in the tank and wastewater pipe influence areas, although the observed Λ slightly deviates from the reference values, likely due to the continuous leaching of CF degraded in the non-saturated zone by a mechanism different from reduction.

7.
Environ Sci Technol ; 51(18): 10526-10535, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28810730

ABSTRACT

Even though multi-element isotope fractionation patterns provide crucial information with which to identify contaminant degradation pathways in the field, those involving hydrogen are still lacking for many halogenated groundwater contaminants and degradation pathways. This study investigates for the first time hydrogen isotope fractionation during both aerobic and anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) using five microbial cultures. Transformation-associated isotope fractionation values (εbulkH) were -115 ± 18‰ (aerobic C-H bond oxidation), -34 ± 4‰ and -38 ± 4‰ (aerobic C-Cl bond cleavage via hydrolytic dehalogenation), and -57 ± 3‰ and -77 ± 9‰ (anaerobic C-Cl bond cleavage via reductive dihaloelimination). The dual-element C-H isotope approach (ΛC-H = Δδ2H/Δδ13C ≈ εbulkH/εbulkC, where Δδ2H and Δδ13C are changes in isotope ratios during degradation) resulted in clearly different ΛC-H values: 28 ± 4 (oxidation), 0.7 ± 0.1 and 0.9 ± 0.1 (hydrolytic dehalogenation), and 1.76 ± 0.05 and 3.5 ± 0.1 (dihaloelimination). This result highlights the potential of this approach to identify 1,2-DCA degradation pathways in the field. In addition, distinct trends were also observed in a multi- (i.e., Δδ2H versus Δδ37Cl versus Δδ13C) isotope plot, which opens further possibilities for pathway identification in future field studies. This is crucial information to understand the mechanisms controlling natural attenuation of 1,2-DCA and to design appropriate strategies to enhance biodegradation.


Subject(s)
Biodegradation, Environmental , Ethylene Dichlorides/metabolism , Hydrogen , Carbon Isotopes
8.
Environ Sci Technol ; 51(11): 6174-6184, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28482655

ABSTRACT

To use compound-specific isotope analysis for confidently assessing organic contaminant attenuation in the environment, isotope fractionation patterns associated with different transformation mechanisms must first be explored in laboratory experiments. To deliver this information for the common groundwater contaminant chloroform (CF), this study investigated for the first time both carbon and chlorine isotope fractionation for three different engineered reactions: oxidative C-H bond cleavage using heat-activated persulfate, transformation under alkaline conditions (pH ∼ 12) and reductive C-Cl bond cleavage by cast zerovalent iron, Fe(0). Carbon and chlorine isotope fractionation values were -8 ± 1‰ and -0.44 ± 0.06‰ for oxidation, -57 ± 5‰ and -4.4 ± 0.4‰ for alkaline hydrolysis (pH 11.84 ± 0.03), and -33 ± 11‰ and -3 ± 1‰ for dechlorination, respectively. Carbon and chlorine apparent kinetic isotope effects (AKIEs) were in general agreement with expected mechanisms (C-H bond cleavage in oxidation by persulfate, C-Cl bond cleavage in Fe(0)-mediated reductive dechlorination and E1CB elimination mechanism during alkaline hydrolysis) where a secondary AKIECl (1.00045 ± 0.00004) was observed for oxidation. The different dual carbon-chlorine (Δδ13C vs Δδ37Cl) isotope patterns for oxidation by thermally activated persulfate and alkaline hydrolysis (17 ± 2 and 13.0 ± 0.8, respectively) vs reductive dechlorination by Fe(0) (8 ± 2) establish a base to identify and quantify these CF degradation mechanisms in the field.


Subject(s)
Chemical Fractionation , Chlorine , Chloroform , Water Pollutants, Chemical , Carbon , Carbon Isotopes
9.
Anal Chem ; 89(6): 3411-3420, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28193000

ABSTRACT

Compound-specific chlorine isotope analysis of tetrachloromethane (CCl4) and trichloromethane (CHCl3) was explored by both, gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and GC-quadrupole MS (GC-qMS), where GC-qMS was validated in an interlaboratory comparison between Munich and Neuchâtel with the same type of commercial GC-qMS instrument. GC-IRMS measurements analyzed CCl isotopologue ions, whereas GC-qMS analyzed the isotopologue ions CCl3, CCl2, CCl (of CCl4) and CHCl3, CHCl2, CHCl (of CHCl3), respectively. Lowest amount dependence (good linearity) was obtained (i) in H-containing fragment ions where interference of 35Cl- to 37Cl-containing ions was avoided; (ii) with tuning parameters favoring one predominant rather than multiple fragment ions in the mass spectra. Optimized GC-qMS parameters (dwell time 70 ms, 2 most abundant ions) resulted in standard deviations of 0.2‰ (CHCl3) and 0.4‰ (CCl4), which are only about twice as large as 0.1‰ and 0.2‰ for GC-IRMS. To compare also the trueness of both methods and laboratories, samples from CCl4 and CHCl3 degradation experiments were analyzed and calibrated against isotopically different reference standards for both CCl4 and CHCl3 (two of each). Excellent agreement confirms that true results can be obtained by both methods provided that a consistent set of isotopically characterized reference materials is used.

10.
J Contam Hydrol ; 192: 1-19, 2016 09.
Article in English | MEDLINE | ID: mdl-27318432

ABSTRACT

Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.


Subject(s)
Environmental Restoration and Remediation/methods , Groundwater/chemistry , Tetrachloroethylene/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Carbon Isotopes/analysis , Denmark , Groundwater/analysis , Groundwater/microbiology , Halogenation , Iron , Sulfides
11.
Water Res ; 92: 235-43, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26874254

ABSTRACT

Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ(13)C/Δδ(37)Cl) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r(2) = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field.


Subject(s)
Chlorine/chemistry , Groundwater/chemistry , Isotope Labeling/methods , Trichloroethanes/chemistry , Carbon Isotopes , Halogenation , Hydrocarbons/analysis , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis
12.
J Hazard Mater ; 299: 747-54, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26248540

ABSTRACT

Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using (13)C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element (13)C-(37)Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using (13)C-(37)Cl-(2)H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the (13)C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element (13)C-(37)Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. (2)H combined with (13)C and (37)Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ(2)H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.


Subject(s)
Carbon/chemistry , Chlorine/analysis , Environmental Pollutants/analysis , Ethylenes/analysis , Hydrogen/chemistry , Iron/chemistry , Isotopes
13.
Environ Sci Technol ; 48(24): 14400-8, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25379605

ABSTRACT

This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.


Subject(s)
Carbon Isotopes/analysis , Chlorine/analysis , Trichloroethanes/chemistry , Carbon Isotopes/chemistry , Chemical Fractionation , Chlorine/chemistry , Iron/chemistry , Isotopes/analysis , Isotopes/chemistry , Oxidation-Reduction , Sulfates/chemistry
14.
Environ Sci Technol ; 48(16): 9430-7, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25010210

ABSTRACT

This study investigates dual element isotope fractionation during aerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via oxidative cleavage of a C-H bond (Pseudomonas sp. strain DCA1) versus C-Cl bond cleavage by S(N)2 reaction (Xanthobacter autotrophicus GJ10 and Ancylobacter aquaticus AD20). Compound-specific chlorine isotope analysis of 1,2-DCA was performed for the first time, and isotope fractionation (ε(bulk)(Cl)) was determined by measurements of the same samples in three different laboratories using two gas chromatography-isotope ratio mass spectrometry systems and one gas chromatography-quadrupole mass spectrometry system. Strongly pathway-dependent slopes (Δδ13C/Δδ37Cl), 0.78 ± 0.03 (oxidation) and 7.7 ± 0.2 (S(N)2), delineate the potential of the dual isotope approach to identify 1,2-DCA degradation pathways in the field. In contrast to different ε(bulk)(C) values [-3.5 ± 0.1‰ (oxidation) and -31.9 ± 0.7 and -32.0 ± 0.9‰ (S(N)2)], the obtained ε(bulk)(Cl) values were surprisingly similar for the two pathways: -3.8 ± 0.2‰ (oxidation) and -4.2 ± 0.1 and -4.4 ± 0.2‰ (S(N)2). Apparent kinetic isotope effects (AKIEs) of 1.0070 ± 0.0002 (13C-AKIE, oxidation), 1.068 ± 0.001 (13C-AKIE, S(N)2), and 1.0087 ± 0.0002 (37Cl-AKIE, S(N)2) fell within expected ranges. In contrast, an unexpectedly large secondary 37Cl-AKIE of 1.0038 ± 0.0002 reveals a hitherto unrecognized involvement of C-Cl bonds in microbial C-H bond oxidation. Our two-dimensional isotope fractionation patterns allow for the first time reliable 1,2-DCA degradation pathway identification in the field, which unlocks the full potential of isotope applications for this important groundwater contaminant.


Subject(s)
Carbon Isotopes/analysis , Ethylene Dichlorides/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Xanthobacter/growth & development , Aerobiosis , Biodegradation, Environmental , Chemical Fractionation , Chlorine/analysis , Isotopes/analysis , Kinetics , Oxidation-Reduction
15.
Sci Total Environ ; 475: 61-70, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24419287

ABSTRACT

The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ(13)C values from -15.6 to -40.5‰ for TCE and from -18.5 to -32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ(37)Cl values for TCE in the contaminant sources, ranging from +0.53 to +0.66‰. Variations of δ(37)Cl and δ(13)C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Tetrachloroethylene/analysis , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis , Carbon Isotopes/analysis , Chlorine/analysis , Isotopes/analysis
16.
Bioprocess Biosyst Eng ; 34(7): 859-67, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21442419

ABSTRACT

The removal of styrene-polluted air emissions by biotrickling filtration was performed to evaluate the influence of using nitrate and urea as a nitrogen source in the nutrient solution supplied to two bioreactors run in parallel under the same operational conditions for 3 months. The use of urea resulted in less biomass content along the packed bed and better performance of the process, with a maximum elimination capacity (EC) of 57.6 g C m(-3 )h(-1) (removal efficiency (RE) of 88.3% and empty bed residence time (EBRT) of 60 s), which was around 54% higher than when using nitrate. EBRTs of 60, 30 and 15 s were evaluated with a urea-based nutrient supply. By decreasing the EBRT from 60 to 30 s the styrene concentration that could be treated with REs above 80% was almost the half, from 1,100 to 600 mg C m(-3), resulting in ECs of 52.8 g C m(-3) h(-1). Working at 15 s was not possible to obtain REs higher than 40% with a maximum EC of 28.5 g C m(-3) h(-1).


Subject(s)
Bioreactors , Filtration/methods , Nitrates/metabolism , Styrene/analysis , Urea/metabolism , Volatile Organic Compounds/analysis , Air Pollution , Biodegradation, Environmental , Biomass , Carbon Dioxide/metabolism , Gases/analysis , Gases/chemistry , Nitrates/analysis , Nitrates/chemistry , Nitrogen/chemistry , Styrene/chemistry , Urea/analysis , Urea/chemistry , Volatile Organic Compounds/chemistry
17.
J Air Waste Manag Assoc ; 59(8): 998-1006, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19728494

ABSTRACT

A 0.75-m3 pilot-scale biotrickling filter was run for over 1 yr in a Spanish furniture company to evaluate its performance in the removal of volatile organic compounds (VOCs) contained in the emission of two different paint spray booths. The first one was an open front booth used to manually paint furniture, and the second focus was an automatically operated closed booth operated to paint pieces of furniture. In both cases, the VOC emissions were very irregular, with rapid and extreme fluctuations. The pilot plant was operated at an empty bed residence time (EBRT) ranging from 10 to 40 sec, and good removal efficiencies of VOCs were usually obtained. When a buffering activated carbon prefilter was installed, the system performance was improved considerably, so a much better compliance with legal constraints was reached. After different shutdowns in the factory, the period to recover the previous performance of the biotrickling reactor was minimal. A weekend dehydration strategy was developed and implemented to control the pressure drop associated with excessive biomass accumulation.


Subject(s)
Air Pollution/prevention & control , Filtration/methods , Interior Design and Furnishings , Manufactured Materials , Volatile Organic Compounds/analysis , Biodegradation, Environmental , Bioreactors , Paint , Pilot Projects , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...